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Abstract. The expression for the Stefan–Boltzmann constant inn-dimensions as obtained by
Landsberg and De Vos is modified by the appropriate spin-degeneracy factor of the photon.

Today it is well recognized that the concept of ‘dimensions’ plays an important role
in the theory of distribution functions, phase transitions, fractal growth, field-theoretic
renormalization, superstring quantization, etc. In this context, a beautiful paper by
Landsberg and De Vos [1] on the Stefan–Boltzmann constantσn in n-dimensional space
becomes particularly relevant. By a judicious combination of hyperspace geometry and
Bose–Einstein statistics these authors derived

σn = rn π
(n−1)/20(n+1)ζ(n+1)k

n+1

0[(n+ 1)/2]hncn−1
(1)

where rn is the spin-degeneracy factor of the photon and the other symbols have their
usual meaning. Assuming radiation to have always two independent states of polarization
irrespective of the dimensionn, Landsberg and De Vos (superscript LD) chose

rLD
n = 2. (2)

The aim of the present comment is to modify expression (2) forrn by the following
arguments where the polarization states of the photon will be assumed to be dictated by the
dimensionn itself. In n = 1 spatial dimension there is no concept of spin, i.e. the particle
would obey the massless scalar wave equation implying thatr1 = 1. However, inn > 2
dimensions the photon is described genuinely by the massless vector wave equation. A
light wave travelling along a given coordinate axis can have its transverse electric vector
pointing along any of the remainingn− 1 Cartesian axes which impliesrn = n− 1. Hence
we suggest that in equation (1) we should use

rn =
{

1 if n = 1

n− 1 if n > 2.
(3)

The prescriptions (2) and (3) coincide ifn = 3, i.e. if the space is three-dimensional.
Although theσn values forn 6= 3 will be altered by our recipe (3), the curves of the
normalized Planck spectrum given in [1] will remain unaffected.
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Before ending, the following important question must be answered: ‘What is the
structure of the underlying Maxwell fields inn-spatial dimensions?’ For simplicity, we
consider a region free of charges/currents and work in the radiation gauge so that the scalar
potential can be made identically zero. The relevant wave equation is the massless vector
one, viz

[∇(n)2 − ∂2/c2∂t2]Ai = 0 i = 1, 2, . . . , n (4a)

subject to the subsidiary condition

∇(n) ·A =
n∑
i=1

∂Ai/∂xi = 0. (4b)

Here∇(n) is then-dimensional gradient operator,∇(n)2 the corresponding Laplacian,t the
time, andAi the ith Cartesian component of the vector potential. Equation (4a) admits
monochromatic plane wave solutions characterized by polarizationε, propagation vector
K, angular frequencyw = cK and phaseθ in the form

A = ε sin(K · x− wt + θ) (4c)

subject to the subsidiary conditionK · ε = 0. The associated electric fieldE now becomes
a vector withn components given by

E = −∂A/∂t = wε cos(K · x− wt + θ) (5)

obeying the transversality conditionK ·E = 0. Clearly if the propagation vectorK was
parallel to thex1-axis, a basic set of electric fields can be constructed with their polarizations
pointing along any of thex2, x3, . . ., xn Cartesian axes. It is this fact which was used in
proposing recipe (3).

It is worth remarking that, inn-dimensions, the magnetic fieldH becomes a dyadic
with n(n− 1)/2 independent tensorial components read off from

Hij = ∂Aj/∂xi − ∂Ai/∂xj i 6= j (6)

whose physical interpretation is, however, more obscure than that of the electric field.
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