Comment on `The Stefan-Boltzmann constant in \boldsymbol{n}-dimensional space'

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 311109
(http://iopscience.iop.org/0305-4470/31/3/021)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.102
The article was downloaded on 02/06/2010 at 07:08

Please note that terms and conditions apply.

COMMENT

Comment on 'The Stefan-Boltzmann constant in n-dimensional space'

V J Menon \dagger and D C Agrawal \ddagger
\dagger Department of Physics, Banaras Hindu University, Varanasi 221005, India
\ddagger Department of Farm Engineering, Faculty of Agriculture, Banaras Hindu University, Varanasi 221005, India

Received 30 July 1997, in final form 2 September 1997

Abstract

The expression for the Stefan-Boltzmann constant in n-dimensions as obtained by Landsberg and De Vos is modified by the appropriate spin-degeneracy factor of the photon.

Today it is well recognized that the concept of 'dimensions' plays an important role in the theory of distribution functions, phase transitions, fractal growth, field-theoretic renormalization, superstring quantization, etc. In this context, a beautiful paper by Landsberg and De Vos [1] on the Stefan-Boltzmann constant σ_{n} in n-dimensional space becomes particularly relevant. By a judicious combination of hyperspace geometry and Bose-Einstein statistics these authors derived

$$
\begin{equation*}
\sigma_{n}=r_{n} \frac{\pi^{(n-1) / 2} \Gamma_{(n+1)} \zeta_{(n+1)} k^{n+1}}{\Gamma[(n+1) / 2] h^{n} c^{n-1}} \tag{1}
\end{equation*}
$$

where r_{n} is the spin-degeneracy factor of the photon and the other symbols have their usual meaning. Assuming radiation to have always two independent states of polarization irrespective of the dimension n, Landsberg and De Vos (superscript LD) chose

$$
\begin{equation*}
r_{n}^{\mathrm{LD}}=2 . \tag{2}
\end{equation*}
$$

The aim of the present comment is to modify expression (2) for r_{n} by the following arguments where the polarization states of the photon will be assumed to be dictated by the dimension n itself. In $n=1$ spatial dimension there is no concept of spin, i.e. the particle would obey the massless scalar wave equation implying that $r_{1}=1$. However, in $n \geqslant 2$ dimensions the photon is described genuinely by the massless vector wave equation. A light wave travelling along a given coordinate axis can have its transverse electric vector pointing along any of the remaining $n-1$ Cartesian axes which implies $r_{n}=n-1$. Hence we suggest that in equation (1) we should use

$$
r_{n}= \begin{cases}1 & \text { if } n=1 \tag{3}\\ n-1 & \text { if } n \geqslant 2\end{cases}
$$

The prescriptions (2) and (3) coincide if $n=3$, i.e. if the space is three-dimensional. Although the σ_{n} values for $n \neq 3$ will be altered by our recipe (3), the curves of the normalized Planck spectrum given in [1] will remain unaffected.

Before ending, the following important question must be answered: 'What is the structure of the underlying Maxwell fields in n-spatial dimensions?' For simplicity, we consider a region free of charges/currents and work in the radiation gauge so that the scalar potential can be made identically zero. The relevant wave equation is the massless vector one, viz

$$
\begin{equation*}
\left[\nabla^{(n)^{2}}-\partial^{2} / c^{2} \partial t^{2}\right] A_{i}=0 \quad i=1,2, \ldots, n \tag{4a}
\end{equation*}
$$

subject to the subsidiary condition

$$
\begin{equation*}
\boldsymbol{\nabla}^{(n)} \cdot \boldsymbol{A}=\sum_{i=1}^{n} \partial A_{i} / \partial x_{i}=0 \tag{4b}
\end{equation*}
$$

Here $\boldsymbol{\nabla}^{(n)}$ is the n-dimensional gradient operator, $\boldsymbol{\nabla}^{(n)^{2}}$ the corresponding Laplacian, t the time, and A_{i} the i th Cartesian component of the vector potential. Equation (4a) admits monochromatic plane wave solutions characterized by polarization ϵ, propagation vector \boldsymbol{K}, angular frequency $w=c K$ and phase θ in the form

$$
\begin{equation*}
\boldsymbol{A}=\boldsymbol{\epsilon} \sin (\boldsymbol{K} \cdot \boldsymbol{x}-w t+\theta) \tag{4c}
\end{equation*}
$$

subject to the subsidiary condition $\boldsymbol{K} \cdot \boldsymbol{\epsilon}=0$. The associated electric field \boldsymbol{E} now becomes a vector with n components given by

$$
\begin{equation*}
\boldsymbol{E}=-\partial \boldsymbol{A} / \partial t=w \boldsymbol{\epsilon} \cos (\boldsymbol{K} \cdot \boldsymbol{x}-w t+\theta) \tag{5}
\end{equation*}
$$

obeying the transversality condition $\boldsymbol{K} \cdot \boldsymbol{E}=0$. Clearly if the propagation vector \boldsymbol{K} was parallel to the x_{1}-axis, a basic set of electric fields can be constructed with their polarizations pointing along any of the $x_{2}, x_{3}, \ldots, x_{n}$ Cartesian axes. It is this fact which was used in proposing recipe (3).

It is worth remarking that, in n-dimensions, the magnetic field \boldsymbol{H} becomes a dyadic with $n(n-1) / 2$ independent tensorial components read off from

$$
\begin{equation*}
H_{i j}=\partial A_{j} / \partial x_{i}-\partial A_{i} / \partial x_{j} \quad i \neq j \tag{6}
\end{equation*}
$$

whose physical interpretation is, however, more obscure than that of the electric field.

VJM is thankful to the UGC for financial support.

References

[1] Landsberg P T and De Vos A 1989 J. Phys. A: Math. Gen. 22 1073-84

